Chapter 3 Linear Regression, Q15

In [42]:
library(MASS)

(a)

In [43]:
summary(Boston)
      crim                zn             indus            chas        
 Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
 1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
 Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
 Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
 3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
 Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
      nox               rm             age              dis        
 Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
 1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
 Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
 Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
 3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
 Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
      rad              tax           ptratio          black       
 Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
 1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
 Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
 Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
 3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
 Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
     lstat            medv      
 Min.   : 1.73   Min.   : 5.00  
 1st Qu.: 6.95   1st Qu.:17.02  
 Median :11.36   Median :21.20  
 Mean   :12.65   Mean   :22.53  
 3rd Qu.:16.95   3rd Qu.:25.00  
 Max.   :37.97   Max.   :50.00  
In [105]:
Boston2 = Boston
coef_simple = c()
Boston2$chas = as.factor(Boston$chas)
for (p in 2:length(Boston2)){
    pred = Boston[,p]
    print(colnames(Boston2)[p])
    lm.model = lm(crim~pred,data=Boston)
    coef_simple = c(coef_simple, coef(lm.model)[-1]) # for part (c)
    print(summary(lm.model))
}
[1] "zn"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-4.429 -4.222 -2.620  1.250 84.523 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.45369    0.41722  10.675  < 2e-16 ***
pred        -0.07393    0.01609  -4.594 5.51e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.435 on 504 degrees of freedom
Multiple R-squared:  0.04019,	Adjusted R-squared:  0.03828 
F-statistic:  21.1 on 1 and 504 DF,  p-value: 5.506e-06

[1] "indus"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-11.972  -2.698  -0.736   0.712  81.813 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.06374    0.66723  -3.093  0.00209 ** 
pred         0.50978    0.05102   9.991  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.866 on 504 degrees of freedom
Multiple R-squared:  0.1653,	Adjusted R-squared:  0.1637 
F-statistic: 99.82 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "chas"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-3.738 -3.661 -3.435  0.018 85.232 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.7444     0.3961   9.453   <2e-16 ***
pred         -1.8928     1.5061  -1.257    0.209    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.597 on 504 degrees of freedom
Multiple R-squared:  0.003124,	Adjusted R-squared:  0.001146 
F-statistic: 1.579 on 1 and 504 DF,  p-value: 0.2094

[1] "nox"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.371  -2.738  -0.974   0.559  81.728 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -13.720      1.699  -8.073 5.08e-15 ***
pred          31.249      2.999  10.419  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.81 on 504 degrees of freedom
Multiple R-squared:  0.1772,	Adjusted R-squared:  0.1756 
F-statistic: 108.6 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "rm"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-6.604 -3.952 -2.654  0.989 87.197 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   20.482      3.365   6.088 2.27e-09 ***
pred          -2.684      0.532  -5.045 6.35e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.401 on 504 degrees of freedom
Multiple R-squared:  0.04807,	Adjusted R-squared:  0.04618 
F-statistic: 25.45 on 1 and 504 DF,  p-value: 6.347e-07

[1] "age"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-6.789 -4.257 -1.230  1.527 82.849 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.77791    0.94398  -4.002 7.22e-05 ***
pred         0.10779    0.01274   8.463 2.85e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.057 on 504 degrees of freedom
Multiple R-squared:  0.1244,	Adjusted R-squared:  0.1227 
F-statistic: 71.62 on 1 and 504 DF,  p-value: 2.855e-16

[1] "dis"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-6.708 -4.134 -1.527  1.516 81.674 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   9.4993     0.7304  13.006   <2e-16 ***
pred         -1.5509     0.1683  -9.213   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.965 on 504 degrees of freedom
Multiple R-squared:  0.1441,	Adjusted R-squared:  0.1425 
F-statistic: 84.89 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "rad"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-10.164  -1.381  -0.141   0.660  76.433 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.28716    0.44348  -5.157 3.61e-07 ***
pred         0.61791    0.03433  17.998  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.718 on 504 degrees of freedom
Multiple R-squared:  0.3913,	Adjusted R-squared:   0.39 
F-statistic: 323.9 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "tax"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.513  -2.738  -0.194   1.065  77.696 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -8.528369   0.815809  -10.45   <2e-16 ***
pred         0.029742   0.001847   16.10   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.997 on 504 degrees of freedom
Multiple R-squared:  0.3396,	Adjusted R-squared:  0.3383 
F-statistic: 259.2 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "ptratio"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-7.654 -3.985 -1.912  1.825 83.353 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -17.6469     3.1473  -5.607 3.40e-08 ***
pred          1.1520     0.1694   6.801 2.94e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.24 on 504 degrees of freedom
Multiple R-squared:  0.08407,	Adjusted R-squared:  0.08225 
F-statistic: 46.26 on 1 and 504 DF,  p-value: 2.943e-11

[1] "black"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.756  -2.299  -2.095  -1.296  86.822 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 16.553529   1.425903  11.609   <2e-16 ***
pred        -0.036280   0.003873  -9.367   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.946 on 504 degrees of freedom
Multiple R-squared:  0.1483,	Adjusted R-squared:  0.1466 
F-statistic: 87.74 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "lstat"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.925  -2.822  -0.664   1.079  82.862 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.33054    0.69376  -4.801 2.09e-06 ***
pred         0.54880    0.04776  11.491  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.664 on 504 degrees of freedom
Multiple R-squared:  0.2076,	Adjusted R-squared:  0.206 
F-statistic:   132 on 1 and 504 DF,  p-value: < 2.2e-16

[1] "medv"

Call:
lm(formula = crim ~ pred, data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-9.071 -4.022 -2.343  1.298 80.957 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 11.79654    0.93419   12.63   <2e-16 ***
pred        -0.36316    0.03839   -9.46   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.934 on 504 degrees of freedom
Multiple R-squared:  0.1508,	Adjusted R-squared:  0.1491 
F-statistic: 89.49 on 1 and 504 DF,  p-value: < 2.2e-16

As we notice only the p-value associated with the f-statistic for the model with "chas" as predictor has a value larger than 5%. So we can conclude that the response, crim, is not associated with the predictor, "chas."

(b)

In [106]:
summary(Boston2)
      crim                zn             indus       chas         nox        
 Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   0:471   Min.   :0.3850  
 1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1: 35   1st Qu.:0.4490  
 Median : 0.25651   Median :  0.00   Median : 9.69           Median :0.5380  
 Mean   : 3.61352   Mean   : 11.36   Mean   :11.14           Mean   :0.5547  
 3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10           3rd Qu.:0.6240  
 Max.   :88.97620   Max.   :100.00   Max.   :27.74           Max.   :0.8710  
       rm             age              dis              rad        
 Min.   :3.561   Min.   :  2.90   Min.   : 1.130   Min.   : 1.000  
 1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100   1st Qu.: 4.000  
 Median :6.208   Median : 77.50   Median : 3.207   Median : 5.000  
 Mean   :6.285   Mean   : 68.57   Mean   : 3.795   Mean   : 9.549  
 3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188   3rd Qu.:24.000  
 Max.   :8.780   Max.   :100.00   Max.   :12.127   Max.   :24.000  
      tax           ptratio          black            lstat      
 Min.   :187.0   Min.   :12.60   Min.   :  0.32   Min.   : 1.73  
 1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38   1st Qu.: 6.95  
 Median :330.0   Median :19.05   Median :391.44   Median :11.36  
 Mean   :408.2   Mean   :18.46   Mean   :356.67   Mean   :12.65  
 3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23   3rd Qu.:16.95  
 Max.   :711.0   Max.   :22.00   Max.   :396.90   Max.   :37.97  
      medv      
 Min.   : 5.00  
 1st Qu.:17.02  
 Median :21.20  
 Mean   :22.53  
 3rd Qu.:25.00  
 Max.   :50.00  
In [107]:
lm.model_all = lm(crim~.,data=Boston2)
summary(lm.model_all)
Call:
lm(formula = crim ~ ., data = Boston2)

Residuals:
   Min     1Q Median     3Q    Max 
-9.924 -2.120 -0.353  1.019 75.051 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  17.033228   7.234903   2.354 0.018949 *  
zn            0.044855   0.018734   2.394 0.017025 *  
indus        -0.063855   0.083407  -0.766 0.444294    
chas1        -0.749134   1.180147  -0.635 0.525867    
nox         -10.313535   5.275536  -1.955 0.051152 .  
rm            0.430131   0.612830   0.702 0.483089    
age           0.001452   0.017925   0.081 0.935488    
dis          -0.987176   0.281817  -3.503 0.000502 ***
rad           0.588209   0.088049   6.680 6.46e-11 ***
tax          -0.003780   0.005156  -0.733 0.463793    
ptratio      -0.271081   0.186450  -1.454 0.146611    
black        -0.007538   0.003673  -2.052 0.040702 *  
lstat         0.126211   0.075725   1.667 0.096208 .  
medv         -0.198887   0.060516  -3.287 0.001087 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.439 on 492 degrees of freedom
Multiple R-squared:  0.454,	Adjusted R-squared:  0.4396 
F-statistic: 31.47 on 13 and 492 DF,  p-value: < 2.2e-16

For all the predictors whose associated p-value is near zero the null hypothesis that Beta-j = 0 can be rejected. We can't reject the null hypothesis for Intercept, zn, dis, rad, black, and medv.

(c)

In [108]:
coef_multi = coef(lm.model_all)[-1]
plot(coef_simple, coef_multi)

The coefficient for nox is -10 in multi regression model and 31 in simple linear regression model.

(d)

In [111]:
for (p in 2:length(Boston2)){
    pred = Boston2[,p]
    if (colnames(Boston)[p]!="chas"){
        print(colnames(Boston)[p])
        lm.model = lm(crim~poly(pred,3), data=Boston)
        print(summary(lm.model))
    }
}
[1] "zn"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-4.821 -4.614 -1.294  0.473 84.130 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3722   9.709  < 2e-16 ***
poly(pred, 3)1 -38.7498     8.3722  -4.628  4.7e-06 ***
poly(pred, 3)2  23.9398     8.3722   2.859  0.00442 ** 
poly(pred, 3)3 -10.0719     8.3722  -1.203  0.22954    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.372 on 502 degrees of freedom
Multiple R-squared:  0.05824,	Adjusted R-squared:  0.05261 
F-statistic: 10.35 on 3 and 502 DF,  p-value: 1.281e-06

[1] "indus"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-8.278 -2.514  0.054  0.764 79.713 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)       3.614      0.330  10.950  < 2e-16 ***
poly(pred, 3)1   78.591      7.423  10.587  < 2e-16 ***
poly(pred, 3)2  -24.395      7.423  -3.286  0.00109 ** 
poly(pred, 3)3  -54.130      7.423  -7.292  1.2e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.423 on 502 degrees of freedom
Multiple R-squared:  0.2597,	Adjusted R-squared:  0.2552 
F-statistic: 58.69 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "nox"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-9.110 -2.068 -0.255  0.739 78.302 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3216  11.237  < 2e-16 ***
poly(pred, 3)1  81.3720     7.2336  11.249  < 2e-16 ***
poly(pred, 3)2 -28.8286     7.2336  -3.985 7.74e-05 ***
poly(pred, 3)3 -60.3619     7.2336  -8.345 6.96e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.234 on 502 degrees of freedom
Multiple R-squared:  0.297,	Adjusted R-squared:  0.2928 
F-statistic: 70.69 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "rm"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-18.485  -3.468  -2.221  -0.015  87.219 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3703   9.758  < 2e-16 ***
poly(pred, 3)1 -42.3794     8.3297  -5.088 5.13e-07 ***
poly(pred, 3)2  26.5768     8.3297   3.191  0.00151 ** 
poly(pred, 3)3  -5.5103     8.3297  -0.662  0.50858    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.33 on 502 degrees of freedom
Multiple R-squared:  0.06779,	Adjusted R-squared:  0.06222 
F-statistic: 12.17 on 3 and 502 DF,  p-value: 1.067e-07

[1] "age"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-9.762 -2.673 -0.516  0.019 82.842 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3485  10.368  < 2e-16 ***
poly(pred, 3)1  68.1820     7.8397   8.697  < 2e-16 ***
poly(pred, 3)2  37.4845     7.8397   4.781 2.29e-06 ***
poly(pred, 3)3  21.3532     7.8397   2.724  0.00668 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.84 on 502 degrees of freedom
Multiple R-squared:  0.1742,	Adjusted R-squared:  0.1693 
F-statistic: 35.31 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "dis"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-10.757  -2.588   0.031   1.267  76.378 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3259  11.087  < 2e-16 ***
poly(pred, 3)1 -73.3886     7.3315 -10.010  < 2e-16 ***
poly(pred, 3)2  56.3730     7.3315   7.689 7.87e-14 ***
poly(pred, 3)3 -42.6219     7.3315  -5.814 1.09e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.331 on 502 degrees of freedom
Multiple R-squared:  0.2778,	Adjusted R-squared:  0.2735 
F-statistic: 64.37 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "rad"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-10.381  -0.412  -0.269   0.179  76.217 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.2971  12.164  < 2e-16 ***
poly(pred, 3)1 120.9074     6.6824  18.093  < 2e-16 ***
poly(pred, 3)2  17.4923     6.6824   2.618  0.00912 ** 
poly(pred, 3)3   4.6985     6.6824   0.703  0.48231    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.682 on 502 degrees of freedom
Multiple R-squared:    0.4,	Adjusted R-squared:  0.3965 
F-statistic: 111.6 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "tax"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.273  -1.389   0.046   0.536  76.950 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3047  11.860  < 2e-16 ***
poly(pred, 3)1 112.6458     6.8537  16.436  < 2e-16 ***
poly(pred, 3)2  32.0873     6.8537   4.682 3.67e-06 ***
poly(pred, 3)3  -7.9968     6.8537  -1.167    0.244    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.854 on 502 degrees of freedom
Multiple R-squared:  0.3689,	Adjusted R-squared:  0.3651 
F-statistic:  97.8 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "ptratio"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
   Min     1Q Median     3Q    Max 
-6.833 -4.146 -1.655  1.408 82.697 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)       3.614      0.361  10.008  < 2e-16 ***
poly(pred, 3)1   56.045      8.122   6.901 1.57e-11 ***
poly(pred, 3)2   24.775      8.122   3.050  0.00241 ** 
poly(pred, 3)3  -22.280      8.122  -2.743  0.00630 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.122 on 502 degrees of freedom
Multiple R-squared:  0.1138,	Adjusted R-squared:  0.1085 
F-statistic: 21.48 on 3 and 502 DF,  p-value: 4.171e-13

[1] "black"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.096  -2.343  -2.128  -1.439  86.790 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3536  10.218   <2e-16 ***
poly(pred, 3)1 -74.4312     7.9546  -9.357   <2e-16 ***
poly(pred, 3)2   5.9264     7.9546   0.745    0.457    
poly(pred, 3)3  -4.8346     7.9546  -0.608    0.544    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.955 on 502 degrees of freedom
Multiple R-squared:  0.1498,	Adjusted R-squared:  0.1448 
F-statistic: 29.49 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "lstat"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.234  -2.151  -0.486   0.066  83.353 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.6135     0.3392  10.654   <2e-16 ***
poly(pred, 3)1  88.0697     7.6294  11.543   <2e-16 ***
poly(pred, 3)2  15.8882     7.6294   2.082   0.0378 *  
poly(pred, 3)3 -11.5740     7.6294  -1.517   0.1299    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.629 on 502 degrees of freedom
Multiple R-squared:  0.2179,	Adjusted R-squared:  0.2133 
F-statistic: 46.63 on 3 and 502 DF,  p-value: < 2.2e-16

[1] "medv"

Call:
lm(formula = crim ~ poly(pred, 3), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-24.427  -1.976  -0.437   0.439  73.655 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)       3.614      0.292  12.374  < 2e-16 ***
poly(pred, 3)1  -75.058      6.569 -11.426  < 2e-16 ***
poly(pred, 3)2   88.086      6.569  13.409  < 2e-16 ***
poly(pred, 3)3  -48.033      6.569  -7.312 1.05e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.569 on 502 degrees of freedom
Multiple R-squared:  0.4202,	Adjusted R-squared:  0.4167 
F-statistic: 121.3 on 3 and 502 DF,  p-value: < 2.2e-16

In the models in which the p-values of the quadratic or cubic terms are near zero, there is an evidence of non-linear relationship between the respecitve predictor and the response. There is nonlinearity between response and the following predictors. zn, indus, nox, rm, age, rad, tax, dis, ptratio, lastat and medv.

In [ ]: